

Flight Control Tower Program

JUXT Technical Test
Haaris Iqbal - December 2022

	

 1

Overview

This application is a maven project made in IntelliJ and written
in Java. It contains a POM file, seven classes, two test suites,
three interfaces, an enumerated class and a README.md file. The
project has been developed and organised in an MVC design
pattern.

Test Driven Development methodology was used for multiple
components, with a total of 47 JUnit tests. Appropriate Javadoc
has been added to every functional file, and all Java code
conforms to Google Checkstyle.

Thoughtful design decisions were made throughout the process of
development. A lot of effort was put into both robustness of the
backend, and UI neatness / helpfulness.

Program features all functionality required from specification
(and more):

• Events can be added and updated.
• Events can be deleted.
• Appropriate error handling for incorrect inputs, duplicate

inputs, and invalid inputs.
• Status table displays status in required format.
• Status table will always update to reflect additions,

detail changes, deletions.
• Status table can display a status for any time stamp in the

past or future and will take updates into account.
• Custom commands for help, guide, listing all logged events,

quitting the program.

	

 2

User Guide

Running Project

The project is titled “FlightControlTower” The dependencies
needed for this project are downloaded automatically. The main
entry point of the application is the “App.java” class. Running
the main method from this class will start the program.

Running Tests

All tests were written with JUnit 5 Jupiter – thus for each
JUnit test suite, all tests can be run individually or at once
using JUnit 5. Earlier versions of JUnit should also work.

Use of Program

All user interaction with the program occurs through the
console.

When running the program, it will conform to the functionality
required in the specification sheet. However, there are some
reserved commands that have been included, which can be typed
at any stage of the program loop:

• “help”: To display commands, and other possible inputs.
• “events”: To display all events that have been logged.
• “guide": A display a user guide on how inputs work for this

program.
• “quit": To quit the program.

Other than these commands, the program works as follows:

1. An event can be added or updated by entering in the following
format:

Fxxx xxx ORIGIN DESTINATION Event-Type Time-Stamp Fuel-Delta

To break this down:

• 'Fxxx' is the PlaneID and must be four characters long.

 3

• 'xxx' is the Plane Model and must be three characters long.
• 'ORIGIN' is the origin city of the flight. It may not be

the same as the destination city.
• 'DESTINATION' is the destination city of the flight. It may

not be the same as the origin city.
• 'Event-Status' is the type of event that has taken place.

There may only be three event types:
o 'Re-Fuel' indicating that the plane is now awaiting

takeoff.
o 'Take-Off' indicating that the plane is now in-flight.
o 'Land' indicating that the plane has landed.

• 'TimeStamp' is the time stamp of when the event has taken
place.

o Time stamps must be in the format of: yyyy-MM-
ddThh:mm:ss

o An example of a valid time stamp is: 2021-03-
29T14:00:00

• 'Fuel-Delta' is the change in fuel that has occurred due
to the event. It must be a number.

2. Next, an event can be removed by providing a valid Plane ID
and time stamp. The format should be as follows:

 Fxxx yyyy-MM-ddThh:mm:ss

3. Finally, a status table can be viewed for any timestamp simply
by entering in the following format:

 yyyy-MM-ddThh:mm:ss

All of these formats conform to the inputs described in the
project specification.

	

 4

Notable Features and Functionality

• The project has been designed in the MVC design pattern,
allowing for an evenly distributed amount of responsibility
to multiple key components. Backend and frontend
functionality are distinct, and this pattern allows for the
potential of vast expansion.

• Dependency injection has been incorporated throughout.

• Required functionality has been developed. For example,
Status tables can be produced for any time stamp, and this
will reflect a correct series of events.

• Extra functionality has been included, such as ability to
log events in any order, preventing duplicate events, and
custom commands to view all events logged thus far, quit,
etc.

• Error handling taken into consideration for all elements
and use cases.

• Included appropriate Interfaces, Enums, Tests.

• For tests, every feature has been tested and demonstrated
to be working as expected. All features are also shown to
respond to errors appropriately.

• All Events are handled as objects. The reason this was done
was because an event incorporates multiple details of
different types, and events need to be transferred,
accessed, manipulated throughout the program. Thus, it
makes for an appropriate DTO.

 5

• All event storage is handled by the DAO. A HashMap of
PlaneID to Array List of Events acts as the pseudo-database
of this program. A visual representation of what this looks
like is as follows:

• This program allows for non-linear entry of events, and

thus events exist unordered without causing issues.

• Responsibility is distributed appropriately according to
the MVC design pattern. The logic of interpreting events
and constructing a status table, as well as validating
details are handled by the Service Layer because these are
business needs. The program is orchestrated by the
controller, and all interaction is handled by View and
UserIO.

• Using LocalDateTime from Java Time library to handle all
time stamp related processing in events.

• In status table, time is formatted so seconds are
displayed, even when zero.

• Javadoc and appropriate comments included throughout.

	

 6

Improvements

There are numerous improvements and expansions that can be made
to this program.

• Code clarity could be improved. In particular, Service
Layer tests are dense and could be broken up into cleaner
components.

• In some areas, TDD could be broken up a bit more. For
example, in removal of an event, deletion of an entire
flight’s history could warrant a separate test case. Or in
updating, updates of multiple elements could be separate
from a single element update. Most critically overall,
could have more tests to check event details outside of
those needed for time stamps (e.g., more tests for
destination, origin).

• Some aspects of the program could have neater
implementations. For example, in calculating status table,
‘if’ checks are long and could be implemented in simpler
ways.

• When calculating which event details to use for the
production of the status table, one second is added to
requested time stamp to ensure that results are inclusive.
There may be more elegant solutions to solving this
particular corner case problem.

• Could incorporate a database. The way storage is handled
currently is basic. It exists as a HashMap in the DAO.
Would ordinarily have incorporated a separate storage
package.

• Could incorporate Spring Dependency Injection. In this
case, the decision was made not to do so for the sake of
reducing dependencies.

 7

• In view, adding duplicate events currently uses the default
success message despite being unsuccessful. This is an
issue that should be resolved.

• Could incorporate more complex error handling (for example
custom errors) to allow for more helpful error messages.

• Documentation could be improved. Should have produced a UML
Diagram for the project and should have given a better
high-level overview of the project. Additionally, certain
key elements should be explained in more detail, along with
the justification of actions taken (should be describing
more of why, rather than what was done).

• Could use a HashMap with a HashSet of Events as the values,
rather than an ArrayList of Events. The reason an ArrayList
is used is currently because in original design, order was
taken into consideration. In new design this is not the
case.

	

 8

Reflection

I do feel that given the requirements from the specification,
this solution is unnecessarily detailed. However, beyond just
correctness my goal was to use this opportunity to demonstrate
good software engineering practice.

In development, I chose a horizonal slicing approach, in which
I built each section layer by layer. I feel that this allowed
for a more robust application, buy the process ended up being
slower and a lot more work was required in planning the design
of the application before programming.

I took a very imperative approach to designing and constructing
this solution for the sake of the test, but I’m really interested
in trying a simpler, more concise, and more functional approach.
I am very eager to learn alternative methodologies, and I’m also
looking to improve my current skills. I feel that there are many
obvious errors in my work right now and numerous improvements
that could be made to this program.

My two biggest compromises with this project are:

1. I didn’t incorporate a database. This was because I felt
that this would take a bit too much time, and a lot of my
time was taken on testing the robustness of the service
layer.

2. I didn’t incorporate custom error messages and custom
throwable errors, which was in my original design, due to
time limitations.

Overall, I’ve thoroughly enjoyed working on this task, and I
hope the pseudo client is satisfied!

